[Cam75] Cameron, P. J., Two remarks on Steiner systems, Geometriae Dedicata, 4 (1975), 403–418.
[CD07] (Colbourn, C. J. and Dinitz, J. H., Eds.), Handbook of combinatorial designs. Second edition, Chapman & Hall/CRC (2007).
[CKZ15] Custic, A., Krcadinac, V. and Zhou, Y.,
Tiling groups with difference sets,
Electron. J. Combin.,
22 (2)
(2015),
P2.56
(https://doi.org/10.37236/5157).
[CS73] Cameron, P. J. and Seidel, J. J., Quadratic forms over GF(2), Indag. Math., 35 (1973), 1–8.
[Fal12] Falcon, R. M., Cycle structures of autotopisms of the Latin squares of order up to 11, Ars Combin., 103 (2012), 239–256.
[GGP18] Gnilke, O. W., Greferath, M. and Pavcevic, M. O., Mosaics of combinatorial designs, Des. Codes Cryptogr., 86 (1) (2018), 85–95.
[Kan72] Kantor, W. M., k-homogenous groups, Math. Z., 124 (1972), 261–265.
[Kan75] Kantor, W. M., Symplectic groups, symmetric designs, and line ovals, J. Algebra, 33 (1975), 43–58.
[Kan95] Kantor, W. M., Codes, quadratic forms and finite geometries. In: Different aspects of coding theory (Proc. Sympos. Appl. Math., San Francisco, 1995), American Mathematical Society (1995), 153–177 pages.
[KD15] Keedwell, A. D. and Denes, J., Latin squares and their applications. Second edition, Elsevier/North-Holland (2015).
[KM76] Kramer, E. S. and Mesner, D. M., t-designs on hypergraphs, Discrete Math., 15 (3) (1976), 263–296.
[KNP11] Krcadinac, V., Nakic, A. and Pavcevic, M. O.,
The Kramer-Mesner method with tactical decompositions: some new unitals on 65 points,
J. Combin. Des.,
19 (4)
(2011),
290–303
(https://doi.org/10.1002/jcd.20277).
[KP08] Kaski, P. and Pottonen, O., libexact User's Guide, Version 1.0, HIIT Technical Reports 2008-1, Helsinki Institute for Information Technology HIIT (2008).
[KPT23] Krcadinac, V., Pavcevic, M. O. and Tabak, K.,
Three-dimensional Hadamard matrices of Paley type,
Finite Fields Appl.,
92
(2023),
102306
(https://doi.org/10.1016/j.ffa.2023.102306).
[KPT24] Krcadinac, V., Pavcevic, M. O. and Tabak, K.,
Cubes of symmetric designs,
Ars Math. Contemp.
(2024)
(https://doi.org/10.26493/1855-3974.3222.e53).
[KR24] Krcadinac, V. and Relic, L.,
Projection cubes of symmetric designs,
Preprint
(2024)
(https://arxiv.org/abs/2411.06936).
[Krc18] Krcadinac, V.,
Some new designs with prescribed automorphism groups,
J. Combin. Des.,
26 (4)
(2018),
193–200
(https://doi.org/10.1002/jcd.21587).
[Krc24] Krcadinac, V.,
Small examples of mosaics of combinatorial designs,
Examples and Counterexamples,
6
(2024),
6100163
(https://doi.org/10.1016/j.exco.2024.100163).
[KV16] Krcadinac, V. and Vlahovic, R.,
New quasi-symmetric designs by the Kramer-Mesner method,
Discrete Math.,
339 (12)
(2016),
2884–2890
(https://doi.org/10.1016/j.disc.2016.05.030).
[KVK21] Krcadinac, V. and Vlahovic Kruc, R.,
Quasi-symmetric designs on 56 points,
Adv. Math. Commun.,
15 (4)
(2021),
633–646
(https://doi.org/10.3934/amc.2020086).
[McK79] McKay, B., Hadamard equivalence via graph isomorphism, Discrete Math., 27 (1979), 213–214.
[MP14] McKay, B. and Piperno, A., Practical graph isomorphism, II, J. Symbolic Comput., 60 (2014), 94–112.
[Nak21] Nakic, A.,
The first example of a simple 2-(81,6,2) design,
Examples and Counterexamples,
1
(2021),
100005
(https://doi.org/10.1016/j.exco.2021.100005).
[NO03] Niskanen, S. and Ostergard, P., Cliquer User's Guide, Version 1.0, Tech. Rep. T48, Helsinki University of Technology (2003).
[Sch93] Schmalz, B., The t-designs with prescribed automorphism group, new simple 6-designs, J. Combin. Des., 1 (2) (1993), 125–170.
[SVW12] Stones, D. S., Vojtechovsky, P. and Wanless, I. M., Cycle structure of autotopisms of quasigroups and Latin squares, J. Combin. Des., 20 (5) (2012), 227–263.
[Was98] Wassermann, A., Finding simple t-designs with enumeration techniques, J. Combin. Des., 6 (2) (1998), 79–90.
[Yan86] Yang, Y. X., Proofs of some conjectures about higher-dimensional Hadamard matrices (Chinese), Kexue Tongbao, 31 (2) (1986), 85–88.
[YNX10] Yang, Y. X., Niu, X. X. and Xu, C. Q., Theory and applications of higher-dimensional Hadamard matrices. Second edition, CRC Press (2010).
generated by GAPDoc2HTML